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Summary 

Applications  of  the  collocational  method  to  wave  propagation  through  a 

nonuniform  region  with  variation  in  only one  spatial  cmrdinate  are shown for 

plane  and  cylindrical cases. Scattering and radiation, in the  absence o f  and 

i n  the  presence of  a similar shaped conducting  object  are  formulated. A simple 

example shows t h e  accuracy  of  this  method. I n  cases where the nonuniform 

region  varies i n  more than  one  spatial  coordinate,  Green's  function i s  appl ied 

to  formulate  an  integral  equation.  Solutions  of  the  integral  equation  can  be 

obtained by an  iterative  method for small variations. 



I .  Introduction 

During Ihe re-entry phase of  a space vehicle, a region of ionized air, called 

plasma, around the vehicle i s  Formed between the body and the shock wave, The 

communication from  the vehicle to ground and vice versa i s  then affected  by the inter- 

action of free electrons with electromagnetic waves i n  this  region. If the ionization 

i s  sufficiently strong, a "blackout" of radio transmission  may occur. 

From the  macroscopic point of  view, the  efFect of the interactions between free 

electrons and electromagnetic waves i n  a region of plasma i n  the absence of static 

magnetic Fields can be represented us an  isotropic lossy dielectric  with  permeability 
1 

P = V 0 ?  and permitlivity 

where w = 

L I =  

w =  
P 

N =  

elm = 

POI eo = 

operating angular frequency of electromagnetic wave, 

collision frequency O F  purticles i n  plasma, 

(e2N/m e )"2 plasma  frequency 

electron density, 

charge and mass of an  electron respectively, 

permeability and permittivity of vacuum. 

0 c 

I n  considering  electromagnetic wave propagation, the  plasma can be treated as a lossy 

dielectric  with  permittivity  given  by Eq. (1). I n  general, the electron density  and 

collision frequency are functions of spatial coordinates, particularly in the direction 

normal to the body of the vehicle. Electromagnetic waye propagation in  a nonuniform 

lossy dielecfric i s  essentially  the problem OF re-entry communication. OF course, the 

geometry i s  another  important parameter. 

2 
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Wave propagation i n  nonuniform media can be dealt  with  by  solving the  wave 

equations derived from Maxwell's equations. Approximation techniques, for instance 

the WKB method and Born approximation have been applied to this problem 2,3,4,5 . 
However, a l l  these  methods are valid  only for  small variations in permittivity, 

Literature concerning  numerical solutions i s  available, but analytic solutions ore 6,7 

always more desirable. 

Consider first the case where the permittivity i s  a real  function (far a typicol 
3 

re-entering  vehicle, the imaginary  part i s  of  the order 10 smaller than the real  part 

at 5-10 KMC) of  only one spatial  coordinate i s  considered first. Wave propagation in 

a nonuniform dielectric slab and a nonuniform dielectric  cylinder under different boundary 

conditions  are  treated separately. The  second order differential  equation  of each case 

i s  solved approximately by the  method of collocation  which converts  the differential 

equation  into a system of algebraic equations. As an  example to demonsfrate the 

accuracy O F  this method, the normal scattering of a plane wave by  an  infinite slab of 

exponentially  varying  permittivity i s  considered. The application of Green's function 

to wove propagution i n  nonunifolm medium i s  described also. The integral  equation 

obtained under this  consideration  can be  solved approximately by the method of.  colloca- 

tion. It i s  more convenient to solve the integral  equation  by Born approximation or 

iterative method i f  the variation of the permittivity i s  small. In  this treatment,  the 

variation can be i n  three  spatial coordinates and the permittivity may be complex. 

2 .  Method of Collocation. 

If the collision frequency i s  very small i n  comparison with the operating frequency, 

the imaginary term of Eq. (1) can  be  neglected provided that the real  part i s  never 

vanishingly small. The problem i s  confined to  simple cases where the permittivity e 

i s  a function of only one spatial dependent variable. The method of collocation 

applicable  to  achieve approximate solutions for the second order homogeneous differential 

equations which result from the Maxwell's equations. This method has three advantages: 

8,9 is 

(1) There i s  no limitation  on the variation O F  permittivity as long as i t  i s  a well 

behaved function. 
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(2) Accurat-e solutions can be achieved even when values of permittivity  are 

known (by experiment) only  at  a  sufficient number of  points in space. 

(3) A closed form approximale expression  for fields  within the rmnunibrm 

region can  be obtoined. 

Four  cases wi l l  be considered sepurately as follows: 

a .  Propagation of plane wave through on infinite  dielectric slab, 

Consider  the oblique  incidence of a  plane wave on  a plane dielectric slab of 

thickness a as  shown i n  Figure 1. 'The perpendicular polarization implies  that the 

electric  field  veclor i s  perpendicular to the plana of incidence (see Figure 1 (a) ), 

and parallel  polarizution indicates {hat the electric Field veclor i s  i n  the plane of incidence 

as i n  Figure 1 (b). Suppose Illat the normalized incident  fields for petpendicular 

polarization and parallel  polarizution are given  by 

respectively, where 2, = / L C G ~  , l h e  subscripts 1 and 2 are used to indicate 

thot the quantities are relclted to the perpendicular and parallel  polarization  respectively, 

The propagation constants i n  the x- and z-directions are given  by 

d 

Lx = k, P B S O C ,  

k = k, S k ,  k 
-2 -1 

where k,  =UJ / f o ~ c  and  the angle a i s  the angle of  incidence. The total  fields 

in regions I und I l l  (see Figure 1) can be wriiten as 

4 



I 

where the superscript denotes the region number, the parameter T and R are the 

trunsmission and reflection  coefficients  respectively.  Writing the expressions for 

the fields inside the dielectric slab, equating the tangential  field components at 

two slab surfaces, and solving for T and R yields 

R 1  = D,  1 Fl(o) G,(a) - F1(a) G,(o) - kx I F ' 1  (0) G' l(a) +',(a) G'l(o)l 
- 1  -2 

R2 = D F2b)   G2b)  - F2(o) G2(a)+ F'2(o) G;(a) -F>(a) G; (0)l 1 k 6 (0) 'C (a) 1 -' - 1  2 
x r  r 

-I- jkx-l ( 1  F'2(o) G2(a) - F2(a) G> (0) I / er(o) 

+ I F' (a) G2(o) - Fz(o) G;(a) I / E r ( a )  1 . 
2 
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The derivatives of the function  with respect to the argument are  denoted by primes. 

F, and G are  two linearly independent particular solutions of the following  differential 

equations. 
’3,8 

where the  relakive permittivity e i s  a  function of x only. The corresponding function 

Fp and G are linearly independent ond satisfy the differential equation 
r 

2 

Obviously Eqs. (6) and (7) are of the same type and can be represented by 

Provided  that  p (x) and q (x) are regular  functions within the region under consideration, 

i .e . ,  p(x) and q(x) have no singularities within the interval 0 5 1< c Q , the two 

linearly independent particular solutions of Eq. (8) can be approximately expressed by 
8 

N 
UeCx) = ZA,,eosL X ,  even function 

en k = c  

where Le, = trx/Zfe& , Le, m ~ / &  . M and N are integers. 

The two  functions Ue and Uo are valid  within o 5 x 5  d . The dimensionless 

quantities v and v to be determined by the differential equation,  are  two real 
e 0’ 

6 



numbers greater  than or equal to  unity. They  become equal as M and N approach infinity. 

The odd solution  only i s  considered  here, The even  solution can be  obtained by the 

sume procedure. Substituting Eq. (10) inio Eq. (8) yields 

In order to have Eqs. (10) satisfy Eq.  (8), Eq. (11) should hold  at  all points within the 

interval o 5 X . But, for the pulpose of approximation, the method of collocation 

requires the equality  to be fulfilled  only  at M points.  Let these points  be 0 < - x p 2  

< x 3 <  . . . < X = a. There are many allowable choices of points.  Usually, i t  i s  

convenient to choose equal intervals between points. For each point, Eq.  (1 1) i s  a 

linear homogeneous algebraic  equation of M unknowns B and  the parameter v0. Hence, 

a system of  M algebraic homogeneous  equations with M unknowns  and  one  parameter i s  

then formed, ihe rest o f  the work i s  devoted to solve  the eigenvalue and eigenvector 

problem, that i s  

9 

m 

m 

The value of v, i s  determined by 

There are many  roots of U, i n  Eq. (13). Taking convergence into account, the 

desirable value i s  the  smallest root which i s  greater than or equal to  unity.  With the 

known value of q the expansion coefficients B can be calculated from Eq. (12) 
m 

in terms of 8 , which i s  the  largest  among  the B I s .  In fact, the index r indicafes r 
r rn 

variations of  the function U (x) within the interval 0 < x < a. 
0 " 
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Similar procedures lead to solutions of  V, and the corresponding expansion coefficients 

A of Eq. (9).  By this method,  the general solutions of Eqs. (6) and (7) are found for a 

specific frequency within the specified region,  and hence the reflection and transmission 

coefficients can be calculated  by Eqs. (3) - (5 ) .  

n 

I t  should  be mentioned that the  method of  least i s  also applicable  to  this 

case. Multiplying Eq.  (1  1) by sin L x and integrating from 0 to a with respect to x 

yields 
os 

The integrals i n  Eq. (14) can be approximated by a weighted surn of Ihe relevant ordinates 

at k poinfs. That i s  

where s = 1 ,  2, 3, , . , M, and x. ’= ia/k. The weighting  coefficients W are. convelltionolly 

given  by  either the Trapezoidal rule” or Simpson’s one-third  rule . Of course, other rules 

can  be used  as well. E q .  (15) again, i s  o system of linear, homogeneous algebraic 

equations which can be explored to  find the suitable values  for v, and B Is. The solutions 

obtained by the  method of  collocation  will  differ  with  different  choice  of the points where 

Eq. (1  1)  i s  satisfied. This phenomenon does not exist in  the methcd of  least squares which i s  

considerably more accurate, but also  more complicated. 

I 
10 

S 

m 

The accuracy of  the approximate method  can  be  demonstrated by comparison with the 

rigorous solutions, This can be  done by considering a lossless dielectric slab of  exponentially 

varying  permittivity. That i s  

where h i s  a constant. The rigorous solution of the electric  field  in the dielectric slab 

for normal incidence ( a = 0) can be  expressed in  ierms of zero order Bessel function. 
8 
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Table I lists the  transmission  and reflection  coefficients  calculated by the  method of 

collocation for Itk, =(,x/&). Only four poinis are used i n  this calculation, namely: 

x = 0, a/3, 2a/3, and a for  the even function; x = a/4, a/2, 3a/4, and a for the odd 

function. These approximate values compared with the exact values show good  ogreernent. 

.t z 

Table I. Comparison of the transmission  and reflection  coefficients 
calculated by the method of collocation and the exact  valuer. 

b. Radiation from a nonuniform dielectric coaled sources. 

I n  section 2-0, the  method of  collocation was applied to the case where the 

source i s  at  infinity. That this method i s  applicable io  sources  near or inside a nonuniform 

dielectric  will  be shown as follows. 

The geometry  under consideration i s  the some  as i n  section 2-a except that an 

infinite  perfect  conducting  plane i s  located at x = 0. Assuming a z-oriented constant 

phase magnetic line current at x = 0, y = 0, i . e .  , Eq. (0,y) = V6(y), where V, i n  volts, i s  

a constant, and 5 (y) i s  the Oirac  della function, f he problem i s  then confined to two 

dimensions, Since the magnetic field has no x -  and y-components, the z-component i s  

given by 

where a, i s  the two dimensional Laplacian operator, 3 denotes the partial  derivative 

with respect to x .  The y-component of electric  field i s  given by 

Z 
X 

I 
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Introducing the Fourier Transformation 

where  the integral i s  from - d) to 00, p i s  {he transformation variable. Sub- 

stituting Eq. (18a) into Eq .  (16) yields 

From Eqs. (18) and (19), ihe z-component o f  magnetic fields in  a i r  and inside th9 

dielectric slab may be expressed respectively  by 

where 0, z= k, - (3 , U and U are the two linearly independent particular 

solutions of Eq.  (19), A, B, and C, functions of p, are  detennined by boundary conditions, 

2 . 4 d  
e 0 

namely: 

Taking the boundary conditions into account, i n  a straight forward manner, the magnetic 

field in air i s  given by 



where 

For for field considerations, i.e., >> I , where x = p cos 0, and y = p sin 9, 

the integral of Eq. (20) can be evaluated  approximately by the method of steepest 

descent. l o  The result i s  

k 

where  the  coordinates without subscript are replaced by two coordinates with subscript 

0 .  This i s  convenient to denote the observation position i n  the following considerations. 

Now, the remaining problem i s  to find two particular solutions U and Uo. Substituting 

(3 = - kos;wQc into E q .  (19), one obtains the  standard folm of E q .  (8) (regarding e as 

a constant). Using the same procedures outlined i n  section 2-a E q .  (21) leads to the 

solution of far field  radiation. I f  a high speed computer i s  adopted to solve  the problem 

a routine  can  be set for  solutions of E q  . t.12). For every specific angle, run the routine 

once. In this manner, the radiation  pattern can be plotted. 

e 

0 

Another solvable example of this type i s  considered next. Consider  the same 

geometry, but let a z-oriented  magnetic current sheet on the conducting wall vary 

periodically i n  the y-direction. Under these  assumptions, the magnetic  fields inside 

and outside the dieleciric slab  may be written as 

where 2L i s  the period  of the magnetic current sheet. In   a i r  

For the magnetic field inside the dielectric slab,  the function U must wtisfy the 

following differential equation: 

II 
n 

1 1  



The generol solution of Eq. (23) may  be  represented by 

The magnetic sheet current on the conducking wall i s  characterized by 
.qj 

The y-component of electric  fields in  air und inside the dielectric slab can be obtained 

by Eq. (17). Equating the tangential field components at both surfaces of the slab and 

solving for the expansion coefficients C of the magnetic field  in  air yields 
n 

The outside field  at any localion can  be evaluated by E q .  (24) provided  that the  series 

of Eq. (24) i s  uniformly convergent,  and the general solution of Eq. (23) i s  known. The 

convergence of the  series  depends on the Fourier representation of  the current source, 

The approximate general solution of  E q .  (23) for  each n may be obtained  by the method 

of collocation as outlined i n  section 2-a. Note that For  Far field considerations,  the 

contribution from the terms with k imaginary are negligible,  i.e., the terms with 
t n 

(a X/L ," > k, are omitted From Eq. (24) for the radiation  pattern, This method i s  

especially convenient for very low frequencies  where (R/L]'> k: only one  term 

remains i n  the consideration of the Far field  radiation. 

C. Scattering of a plane wave by cylindrically symmetric  nonuniForm dielectric  cylinder 

In  previous discussions,  the applications of the collocational method are limited  to 

plane geometry. Now, the upplications are extended to the cylindrical coordinates and 

wi l l  be formulated as follows: 

The geometry  corlsidered first i s  a dielectric  cylinder of radius a embedded i n  

free space. The axes of the cylinder i s  colinear  with Ihe z-axis as shown in  Figure 2 .  

The relative pennitlivity  of Ihe dielectric i s  a function of radius only, i .e,, er (p), 

12 



for 0 < p < a, where p i s  the radial coordinate. The two cases of  oblique 

incidence w i l i  be considered, namely, the  perpendicular  polarization and the parallel 

polarization. The r-component of the incident fields in both cases are respectively 

given by 

" 

where  the propagation constants k and k and the wave  impedance Z are given as 

before. The angle a i s  the angle of incidence. Using the wave transfomation", the 

factor  exp. (jk X) can be expressed i n  terms of Bessel Functions of the first kind and the 

cosine function as 

X 2, 0 

X 

where X = p cos 8, \ l ie argument of the Bessel functions i s  

3 = p k  W 5 ( 2 ! .  

Since the cylinder i s  assumed to have infinite length and the permittivity i s  uniform in  

the z-direction, the resultant field must be periodic in  the z-direction and vary  according 

to the factor  exp. (jk 2 ) .  The fotal  fields  (incident  plus  scattering) in  air may be written 

as 
Z 

qi =(-&/z~){ . T o (  '5)-t- db kfo(  5 )  
Db 

+ 2 hz  5 1 [ j " J . c ~ ) ~ a , t l , c ~ ~ ~ e e e n m 3 e x p , ~ j ~ ~ ) ,  (2 7) 

2, f-fO(i) 

'2 blzt ~ ~ a 5 , c 3 l t b ~ / ~ ~ ( ~ > J c w n * ~ e * p ( i / I ~ ,  k (28) 

where the function Hn( !j ) i s  fhe nth order Hankel  function of the second kind. For 

simplicity, the superscript (2) i s  omitted. The scattering  amplitudes a and bn, are 
I3 
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determined by boundary conditions. The corresponding fields  inside  the dielectric 

cylinder ore given by 

- 
where the functions x and are the regular particular solutions of the following 

differential equations  respectively 

- 
w 

where W (p) t (p) - sinLa . With knowledge of the z-component of the magnetic 

field or  electric field, the 0-component o f  the corresponding electric and magnetic 

fields  can be obtained  by 

respectively. By equating the tangential components of the fields at the surface of the 

cylinder and putting terms of the same angular variafion equal to zero, the resultant 

algebraic equations can be solved for the scattering  amplitudes a and b for each n, 

namely 
n  n 

14 



where 5, = jdabs@ . The solution wi l l  be complete i f  the functions 6 and 

*a are  known. Observe that the differential equafions (31) and (32) are of the same 

form and  may be written as 

where p (p) and q (p) are regular  functions within the region o ~(I I  54 . Analogous 

to Eq. (10) of section 2-a,  the regular particular  solution of Eq. (35) may be approximated 

by 

where 5 =f'/ua and Jn ( am) = 0, M i s  an  integer. The subscript n of Vn (p), 

C and a are omitted. The dimensionless  parameter u, to be determined by Eq. (35), 
i s  a real number which i s  greater  than or equal to unity.  Subslituting Eq. (36) into (35) 
yields 

nm  nm 

Observe that Eq. (37) i s  similar  to Eq. (1  I ) .  The same procedures outlined  in section 2-a 

may be used to determine the suitable  value of u and the expansion coefficients C . In  

other words, i f  a l l  the sine functions are replaced  by J cosine functions by Jln , mw/! 

by am/u, and Bm by Cm in Eqs. ( 1 1 )  - (15), then a l l  these equations  and the associated 

discussions are valid for obtaining the  regular  solution of Eq. (35). 

m 

n' 

An importanf geometry being considered in this  section i s  a conducting  cylinder of 

mdiut b coated by a cylindrically symmetric nonuniform dielectric medium to radius a as 

15 



shown in Figure 3. The scattering of a  plane wave by this object can be analyzed i n  the 

same manner as in section  2-c.  Considering  again the oblique  incidence  with  perpendicular 

or parollel Polarization, the incident  fields in both cases are given  by Eqs. (25) of section 

2-c. Eqs. (25) throubh (35) and the associated discussions are valid for the present case 

except  that the two  functions and $a are the general  solutions of Eqs. (31) and 

(32) respectively, and the additional boundary conditions. 

e'< & I =  0, 
- 

for perpendicular polarization 

for parallel  polarization. 

are necessary. In  this case, since the singular point i s  not  included in the region brpsa,  
Eq. (35) can be solved by expressing the solution in terms of  trigonometric  functions. 

Substituting p = x +  b into Eq ,  (35) yields 

Eq. (38) i s  similar  to E q .  (8) for the interval 0 5 X S A ,  where d = a - b. Hence, the 

general  solution  inside the interval 0 C[ can be obtained  by using the same 

procedures as for solving Eq.  (8). In other words, i f  p (x) i s  replaced by P (x), q (x) 

by Qn(x), U (x) by Vn(x) and a by d in  Eqs. (8) - (15), then a l l  these equations and 

the associated statements are valid for obtaining the approximate  general  solution of  Eq .  

(38). I t  should be noted that the series of  Eqs. (27) and (28) may converge very  slowly 

at  high frequencies. 

In the presence of a  z-directed constant magnetic phase current sheet on  the surface 

of the conducting  cylinder, for no z variation, the magnetic field has only  a z-component. 

Inside the dielectric medium, the magnetic field i s  given  by 

16 



where < (t)  i s  the general  solution  of Eq. (31) with a = 0 .  The magnetic 
current sheet  may be expressed  as 

The z-component of the magnetic field in  air may be written as 

The +component of all  electric fields can be obtained  by Eq. (33a) with a = 0 .  

The boundary conditions at p = b and at p = a  require 

A and 6 are constants, R (p) and S (p) are two linearly independent  solutions 

of Eq. (31) with  a = 0, inside  the closed interval b < p < a. These two 

functions  can be obtained by the  method used in solving Eq. (38). The convergence 

of  Eq. (39) depends on the operating  frequency and  the Fourier representation of the 

current source. 

n  n  n  n 

- - 

3. Method of Green's  Function 

The single spatial variation model i s  not adequate lo represent a re-entering 

space vehicle  in many  cases. This can be seen  from Figures8-10 of reference (2). 

Solutions  for wave propagation in a general  nonuniform medium (the permittivity and 

permeability are functions of two  or three spatial  coordinates)  are  desirable for this 

application. It i s  possible to consider the  stimulated polarization of the nonuniformity 

17 



of the permittivity and the permeability as  sources, though these non-linear sources 

are  functions of field strength. Under this consideration, the  dyadic Green's function 

i s  applicable  to formulate  the radiation  field  of the stimulated sources.  The integral 

equation  can be solved approximately  by itemtive method for small variations. The 

Born approximation i s  the first  order of  the iterative approximation, 

a. Formulation: 

Suppose there exist electric and magnetic sources in a nonuniform medium. The 

Maxwell equations for 

forms: 

V X f f  = 
vx E = 
va w m  
v- W E )  

time-hannonic varying  fields  exp (iut) 1 take the following 

where the capital letters  without subscripts  represent vector  quantities, E, J, and pa 

are the electric  field strength, current  density and  cha.rge density; H, i, and p, are 

the magnetic field strength, magnetic  current  density and magnetic charge density 

respectively.  Eliminating E or I-I from these equations yields 

where 

18 



In most  cases, i t  i s  difficult  to  find the  solution of Eqs. (41) and (42). Other forms 

of wave equations  are  then  desirable. Assume that the dynadic Green's function 

E ( R I Ro) satisfies the inhomogeneous dynadic  equation 

where r i s  the unity dynadic, i.e., for any  vector function F, T 0 F = F I = F ; 

and 

- 

Upon multiplying Eq. (45) on  the left by H and (41) on the rifht by G, subtracting 

the resulting equations and integrating over a volume V enclosed by surface S, 
one obtains the vector  equation 

Applying the dynadic Green's theorem ' " l 2  to the left  hand side of Eq. (46) and 

retarmnging terms yield 

19 
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where n i s  the unit vector  outward normal to the surface. The integtul  equation 

for the electric strength  can be obtained simply by replacing H by E, and M by 

N in Eq. (47). That i s  

The Green's  functions of Eqs. (47) and (48) satisfies the same boundary conditions 

of the magnetic field strength H and the electric  field strength E respectively, 

Hence they may  be different. For an infinite domain with  specification of outgoing 

waves at  infinity, they  are  equal and may be written as 

where 

and the two functions  f and g are vanished at  infinity. Physically, the problem i s  

considered for the uniform medium with  additional sources, jwpog H and i w aof E. 

Substituting Eq. (49) into Eqs. (47) and (48) and taking  into consideration  that 

17, G = v+, 
A- (o .G ,  = Ax vd, 
vt- =(kvAJ i$) 

20 



where A i s  an  arbitmry vector, yields 

and 

Rewriting Eqs. (41) and (42) as 

constructing  a  vector Q = A$, putting H or E with Q i n  the Green's second 

vector  identity and following the procedures as outlined by Stratton, gives exactly 

the same  as Eqs. (50) and (51). 

13 

b. Scattering of a  plane wave by nonuniform media 

For an application  of the method described  previously, the scattering of a 

plane wave by a  nonuniform medium with small variations i n  e and p wi l l  be 

considered. The small variation means that f and g, small compared to  unity, 

are continuous  functions  asymtoptic to zero or equal to zero at  infinity. Since the 
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surface S under consideration i s  receded to  infinity, the  contributions of the surface 

integmls vanish. Thus, Eqs. (50) may be written as 

where H = HS t. HI"', and HIn and HS are the H fields of the incident and the 

scattered wave. By Born-approximation, the scattered-field terms in the integral 

are neglected.  Physically,  this means that the incident wave stimulates the radiation 

from the  nonuniform zone without  interaction. Under this assumption, Eq. (54) i s  

reduced to be 

Confining the nonuniform zone to  a  finite region, the far field approximation  requires 

that 

Eq. (55) can be computed i n  some simple cases. For example, i f  c and p are 

independent of angular coordinates, the  volume integral  of Eq. (55) can be evaluated 

without much difficulty. The electric  field strength can be obtained by the sa.me 

procedures, that i s  

Usually i t  i s  more convenient to  utilize the HS or ES computed by Eq. (55) or (56) to 

solve ~ a x w e ~ ~ s  equations  for E or H' respectively. 
S 

22 



C .  Radiation from line source in nonuniform media 

The problem i s  again  confined to nonuniform media of finite extent and of 

simple geometry. The volume and surface integrals of Eqs. (47) and (48) are 

integrated  over  this finite region with the  dynadic Green's function satisfying 

respectively. Of course, the Green's  function satisfies the appropriate boundary 

conditions. Eqs. (47) and (48) may be solved by approximate methods to  evaluate 

the field intensities at the surface. The space outside the  nonuniform zone i s  free 

space. The fields strength in this  region are solutions with  specification  of outgoing 

waves of the uniform wave equation,  Their  amplitudes  can be evaluated  by  matching 

the tangential components at the boundary with those calculated  by Eqs. (47) and (48) 

correspondingly. For example, consider a  conducting tylinder  of radius b and 

infinite length  coated by  a  dielectric  cylindrical  ring  of mdius a. The permittivity 

i s  characterized by e a2/ ? , where r i s  the radius from the axis. The 

permeability i s  constant. The ratio  of a  to b i s  equal to 1.2, for  this case 

6 = 1.1934. Assuming that no current sources exist in the dielectric and free space 

but  an axial magnetic line current V6 (0)/b on the surface of  the conducting  cylinder, 

the Green's function i s  derived by considering  an axial magnetic line current 

6 (r - r ) 6 (0  - e ) /r i n  the uniform dielectric  ring, That i s  

0 

r 

0 0 0  
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where J and N are Bessel functions of the first and second kind, H i s  Hankel 

functioruof the second kind. The z-component of magnetic field strength i n  the 

dielectric i s  given by 

n n  n 

The magnetic field strength in  a i r  may be expressed by 

Eq. (17) may be solved by iterative method, that is, let 

Then substituting Eq. (59) into the right hand side of Eq. (57) one obtains H (l)(R). 

Physically, Eq. (59) represents the magnetic field  in the dielectric i f  the permittivity 

i s  uniform. H d(') i s  the first  order  approximation of ihe magnetic field or the H 

field  of the Born approxiination.  Higher  order  approximutions  can be obtained 

z 

Z 
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accordingly. However,  the convergence i s  not assured for some  cases. In Table I, 

the zero order and the first  order  approximate  values of the expansion coefficient C 

are listed to compare with the exact value at k a = 0.01, 
0 

r 

Table I Approximate and exact  values of C o/ waoV - 
zero  order exact first  order 

0.273 0.25 0.236 

Conclusion: 

In  the foregoing  consideration, the method of  collocation and the method of 

least squares were shown applicable  to wave propagation through nonuniform regions 

with  variation in only one spatial  coordinate.  Scattering and radiation in plane and 

cylindrical cases were formulated  by these two methods. Similar  analysis w i l l  lead 

to  applications of these  methods for spherical geometry, The method of  collocation 

has three advantages: 

(1) There i s  no limilation on the variation  of  permittivity. 

(2) Good  solutions  can be achieved for values of  permiitivity known only  at 

a few but sufficient points in space. 

(3) A closed form approximate expression for fields within the nonunibrm 

region  can be obtained. 

In cases where the nonuniform  region  varies in more than one spatial  coordinate, 

Green's function i s  shown to fonnulate  the integral form of the wave equation, 

Solution of the integral  equation  can be obtained by an iterative method for small 

variations. 
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Plane-Sheath Scattering 

Figure 1 - (a) Perpendicular polarization. 
(b) Parallel polarization. 
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Figure 2 - Scattering of a plane  wave by a  cylindrical 
nonuniform dielectric  material. 
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Figure 3 - Conducting  cylinder coated by a cylindrically 
symmetric nonuniform dielectric mediumr 
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